ANALIZA PROCESU USUWANIA CO₂ Z GAZÓW ZA POMOCĄ WODNEGO ROZTWORU AMONIAKU

Wojciech M. BUDZIANOWSKI Politechnika Wrocławska, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław wojciech.budzianowski@pwr.wroc.pl

STRESZCZENIE

W artykule omówiono proces usuwania CO_2 z gazów za pomocą wodnego roztworu NH_3 (proces NH_3) z wykorzystaniem reaktora ze zraszanymi ścianami. Celowość podejmowania badań usuwania CO_2 uzasadniono poprzez interpretację anomalii temperaturowych w Układzie Słonecznym. Wskazano, że szerokie wprowadzenie usuwania CO_2 w elektrowniach spowoduje znaczącą redukcję emisji SO_2 , NO_X i pyłów, a może doprowadzić do wzrostu emisji NH_3 . Dla badanego procesu NH_3 określono metodykę zapobiegania jego głównej wadzie, t.j. ulatnianiu się NH_3 do fazy gazowej. Objaśniono rolę istotnych parametrów projektowych procesu NH_3 , t.j. pH, temperatury, ciśnienia, hydrodynamiki oraz migracji jonów. Zaakcentowano zasady integracji instalacji CCS (*Carbon Capture and Storage*) z technologiami energetycznymi.

1. Wstęp

Antropogeniczna emisja CO₂ zaburzyła naturalny obieg węgla na Ziemi. Stężenie CO₂ w atmosferze wzrosło o około 30% w ostatnich 150 latach, a trend ten uległ wzmocnieniu w ostatnim okresie [1]. Część naukowców uważa, że to głównie atmosferyczny CO₂ odpowiada za obserwowane ocieplenie klimatu na Ziemi [1]. Obecna nauka nie dostarcza jednak jednoznacznych dowodów naukowych na poparcie takiej tezy. Stąd niektórzy badacze kwestionują istnienie takiego związku. W tej sytuacji badania w zakresie procesów CCS nadal wymagają starannego uzasadniania.

Warto zauważyć, że wprowadzenie usuwania CO_2 w energetyce całkowicie zmieni akcenty w rozkładzie emisji zanieczyszczeń gazowych. Otóż, technologie usuwania CO_2 przyczynią się do jednoczesnego usuwania SO_2 , NO_X i pyłów. Spowoduje to zapotrzebowanie na nowe urządzenia i technologie z zakresu oczyszczania gazów. Niektóre technologie usuwania CO_2 mogą powodować jednak duży wzrost emisji NH_3 [2]. Stąd w niniejszej pracy zwrócono szczególną uwagę na problematykę emisji NH_3 przy wychwycie CO_2 .

2. Uzasadnienie dla podejmowania badań procesów CCS już dzisiaj

Zwiększona emisja antropogeniczna CO₂, m.in. ze spalania paliw kopalnych i produkcji cementu, w połączeniu z ograniczeniem obszarów pokrytych roślinnością powoduje trwałe zaburzenie naturalnego obiegu węgla w przyrodzie i ciągłą akumulację CO₂ w atmosferze.

Z bilansu promieniowania docierającego ze Słońca do planet i księżyców oraz wypromieniowywanego przez te ciała niebieskie wynika zależność na temperaturę ich powierzchni:

$$T_{P} = \left(\frac{(1-a)P_{\mathcal{S}_{L}O}}{1\pi f_{P}^{2}\sigma}\right)^{\frac{1}{4}}$$
(1)

Wykorzystując równanie (1) obliczono temperatury powierzchni wszystkich planet i wybranych księżyców w Układzie Słonecznym. Z porównania zamieszczonego w tabeli 1

wynika, że stosunek T_R/T_P mieści się w większości przypadków w przedziale od 0,93 do 1,28. Jednakże na trzech planetach poziom temperatury jest nadspodziewanie wysoki. W przypadku Saturna i Jowisza wiadomo, że planety te generują energię, co tłumaczy ich wysokie rzeczywiste temperatury. Natomiast w przypadku Wenus bardzo wysoka temperatura wynika z występującego na tej planecie globalnego ocieplenia.

Tabela 1. Porównanie temperatur i składu atmosfery planet i księżyców w Układzie Słonecznym. Oznaczenia: l_P - średnie odległości planet i księżyców od Słońca, *alb* - albedo, T_R - rzeczywiste i T_P - przewidywane temperatury powierzchni planet oraz *p* - ciśnienie; 1 j.a. = 1,496 · 10¹¹ m, moc Słońca P_{SLONCE} = 3,86 · 10²⁶ W.

	Merkury	Wenus	Ziemia	Księżyc	Mars	Jowisz	Saturn	Tytan	Uran	Neptun
l_P , j.a.	0,387	0,723	1,00	1,00	1,52	5,20	9,54	9,54	19,2	30,1
alb	0,11	0,65	0.30	0,12	0,15	0,52	0,47	0,22	0,51	0,41
T_R , K	443	737	288	250	227	152	143	94	68	53
T_P, \mathbf{K}	435	252	255	270	217	102	77	85	53	45
T_R/T_P	1,02	2,92	1,13	0,93	1,05	1,49	1,86	1,11	1,28	1,19
gaz ciepla- rniany	ślady	96% CO ₂	0.04% CO ₂	ślady	95% CO ₂	0,3% CH ₄	0,4% CH ₄	1% CH4	2% CH ₄	1% CH4
gaz inertny	42% O ₂	4% N ₂	78% N ₂	25% He	3% N ₂	90% H ₂	96% H ₂	98% N ₂	83% H ₂	80% H ₂
p, MPa	10-15	9,3	0,101	$3 \cdot 10^{-16}$	6·10 ⁻⁴	$7 \cdot 10^{-2}$	0,14	0,15	0,12	0,2

Wiadomo, że CO₂ jest zdolne do absorpcji promieniowania IR w zakresie długości fal 13-16 µm, co jest bliskielugościom fal, dla których Ziemia emituje promieniowanie o największym natężeniu. Ponadto wiadomo, że praktycznie żaden inny typowy atmosferyczny gaz, z parą wodną włącznie, nie wykazuje, w tym zakresie fal, zdolności absorpcji promieniowania (tzw. okno atmosferyczne). Można więc stwierdzić, że cząsteczki CO₂ występują w atmosferze w wyższym stanie energetycznym związanym z oddziaływaniem pola IR. Istnieje kilka prawdopodobnych mechanizmów przekazywania tej nadmiarowej energii z powrotem do powierzchni planety. Mianowicie, na skutek zderzeń czasteczek CO₂ z cząsteczkami gazów inertnych, CO₂ oddaje energie czyniąc się zdolnym do ponownej absorpcji IR, a gaz inertny przekazuje ciepło planecie przez przewodzenie. Dalej, cząsteczka CO₂ lub inert wypromieniowuje energie we wszystkich kierunkach, w tym do planety. Następnie ruchy konwekcyjne, obecne np. w troposferze Ziemi, powodują kolizję cząsteczek gazu z planetą, czemu towarzyszy wymiana ciepła. Wynika z tego, że globalne ocieplenie będzie tym większe im większe będą: (1) udział gazów cieplarnianych zdolnych absorbować promieniowanie w zakresie emitowanym przez planetę, (2) udział gazów inertnych wspierających odbiór energii od cząsteczek gazu cieplarnianego i transport ciepła ku planecie, oraz (3) ciśnienie, warunkujące duże zawartości tych gazów w jednostce objętości i stąd wysoką częstotliwość zderzeń gaz cieplarniany-inert, umożliwiającą zwiększoną szybkość absorpcji promieniowania. Na Wenus spełnione są warunki (1) i (3) oraz w pewnym stopniu (2). Na Marsie spełnione są warunki (1) i w pewnym stopniu (2), ale nie jest spełniony warunek (3). Wszystkie trzy warunki pozornie spełnia Tytan, ale zgodnie z prawem promieniowania Wiena ten zimny księżyc emituje głównie dłuższe fale niż te, które absorbuje obecny w jego atmosferze CH₄, t.j. 7,5 µm, a exinie spełnia warunku (1). Na Ziemi spełnione są warunki (2) i (3), a globalne ocieplenie hamuje jeszcze tylko relatywnie małe stężenie gazów cieplarnianych, w tym szczególnie $CO_2(1)$.

Inne powody podejmowania tematyki CCS to możliwości komercyjnego wykorzystania CO₂, np. do intensyfikacji wydobycia gazu i ropy naftowej.

3. Reaktor ze zraszanymi ścianami

Usuwanie CO_2 metodą reaktywnej absorpcji można prowadzić w kontaktorach gazciecz, do których należy reaktor ze zraszanymi ścianami. Tego typu reaktory oferują prostotę geometryczną i dobrze zdefiniowaną hydrodynamikę, co sprawia, że nadają się do badań kinetycznych procesu reaktywnej absorpcji. Procesy separacji CO_2 w warunkach przemysłowych, t.j. z krótkim czasem kontaktu faz, nie osiągają zwykle równowagi termodynamicznej z powodu ograniczonych szybkości reakcji i dyfuzji. Stąd, badania kinetyki procesu mają duże znaczenie w projektowaniu takich aparatów. Na rys. 1 przedstawiono ideę reaktora ze zraszanymi ścianami, użytego tu do badań separacji CO_2 za pomocą wodnego roztworu amoniaku.

Rys. 1. Schemat reaktora ze zraszanymi ścianami.

4. Charakterystyka procesu NH₃

Spośród konwencjonalnych reaktywnych procesów usuwania CO_2 najintensywniej studiowany był dotąd proces monetanoloaminowy (MEA). Proces MEA ma jednakże wysoki jednostkowy koszt separacji CO_2 , rzędu 40-70 USD/Mg CO_2 [4]. Ma także szereg wad, jak np. małą szybkość absorpcji, małą pojemność rozpuszczalnika, degradację aminy przez SO_2 , NO_X, HCl, HF i O_2 zawarte w spalinach, dużą korozję aparatury oraz dużą entalpię regeneracji rozpuszczalnika [5, 6]. W procesie MEA należy usunąć SO_2 i NO_X jeszcze przed absorberem, podczas gdy w procesie NH₃ wszystkie kwaśne gazy można usuwać jednocześnie.

Proces NH₃ oferuje szereg przewag nad procesem MEA. Na przykład pojemność absorpcyjna amoniaku wynosi 1,2 kg CO₂/kg NH₃ a dla MEA tylko 0,4 kg CO₂/kg MEA. Amoniak prawie nie podlega degradacji utleniającej, gdyż nie zawiera łańcuchów węglowodorowych, dlatego zwiększa się liczba możliwych recykli tego absorbenta. Strumień absorpcji CO₂ do amoniaku jest 3 krotnie większy, niż do MEA w podobnych warunkach [7]. W efekcie proces NH₃ zapewnia większą sprawność separacji CO₂, w porównaniu z procesami MEA i DGA [8]. Jest to proces, którego przydatność została zauważona zupełnie niedawno, i nie został nawet jeszcze wymieniony w czwartym raporcie IPCC [1].

Do głównych wad procesu NH₃ należy zaliczyć lotność amoniaku, który uwalnia się do strumienia oczyszczanych gazów. Wszystkie znane techniki separacji niewielkich ilości NH₃ z gazów są drogie [9]. Redukcję lotności NH₃ można osiągnąć poprzez obniżenie temperatury absorpcji do 275-283 K [10] lub poprzez dodatkowe płukanie gazu w kwaśnym roztworze. Staranne projektowanie absorbera CO_2 zmniejsza koszty operacyjne a stosowne procedury projektowe omówiono w [9, 11].

5. Modelowanie procesu NH₃ prowadzonego w reaktorze ze zraszanymi ścianami

Spośród szeregu reakcji chemicznych przebiegających w procesie NH₃ największe znaczenie mają następujące reakcje elementarne:

- tworzenie jonu karbaminianowego:

$$C_{2} + \mathcal{O}_{3} \leftrightarrow \mathcal{H}N_{2}CH^{-}\Theta H^{+}$$
(2)

- tworzenie kwaśnych jonów węglanowych poprzez reakcję CO₂ z jonem hydroksylowym:

$$C_{2}\Theta O \xrightarrow{} H H \zeta$$
(3)

- tworzenie jonów węglanowych:

$$H \quad \mathcal{C} \leftrightarrow \mathcal{O} \quad {}^{2}_{3} \mathcal{O} + H^{+} \tag{4}$$

- hydroliza amoniaku:

$$N_{3} + H_{2}O \leftrightarrow N_{4}^{+} + HO^{-}$$
(5)

- dysocjacja wody:

$$H_2 O \leftrightarrow O \quad \overline{H} H^+ \tag{6}$$

W tabeli 2 zestawiono parametry kinetyczne reakcji elementarnych (2-6).

Tabela 2. Parametry kinetyczne reakcji elementarnych (2-6)

Reakcja	Równanie kinetyczne	Źródło
(2)	$R_{(2)} = 1.6 \cdot 1 \cdot 6 e \left(\frac{-6}{x_{R}^{G} T} \right) C_{C_{2}} C_{N_{3}}$	[13]
(3)	$R_{(3)} = 4.3 \cdot 1 \frac{1}{2} e^{0} \left(\frac{-5}{x_{R}^{G} T} \right)^{5} C_{C_{2}} C_{0}^{4}$	[14, 15]
(4-6)	Reakcje natychmiastowe	[16]

W procesie absorpcji CO_2 tworzy jon karbaminianowy, który jest dominującym składnikiem przy małej zawartości CO_2 i jednoczesnym nadmiarze NH₃. Dla większej zawartości CO_2 i stąd mniejszego stężenia niezdysocjowanego NH₃ równowaga przesuwa się w kierunku jonów węglanowych. To przesunięcie jest powodem większej pojemności

absorpcyjnej wodnego roztworu amoniaku, w porównaniu z procesem MEA, gdzie CO₂ pozostaje głównie pod postacią karbaminianu [12]. Jednakże przesunięcie równowagi w kierunku jonów węglanowych wymaga utrzymywania większego pH, by zapewnić dostępność jonów hydroksylowych, które uczestniczą w reakcji tworzenia kwaśnych węglanów w reakcji (3). Z kolei tworzenie karbaminianu produkuje jony H⁺, obniżając pH i zwiększając hydrolizę wolnego amoniaku. Gdy amoniak ulegnie zupełnej hydrolizie pH maleje i tworzenie jonów węglanowych zostaje wyhamowane.

Szybkość fizycznego rozpuszczania się gazowych CO_2 , NH_3 i H_2O w cieczy jest duża, stąd przyjęto równowagę na powierzchni kontaktu faz. W tym celu dla CO_2 i NH_3 w modelu zastosowano prawo Henry'ego [16]:

$$C \ _{\mathcal{Q}_{g}} \leftrightarrow C \ _{\mathcal{Q}_{c}} p_{C \ \varrho} = H_{C \ \varrho} C_{C \ \varrho} \quad N \ _{\mathcal{H}_{g}} \leftrightarrow N \ _{\mathcal{H}_{c}} p_{N \ \mathcal{H}} = H_{N \ \mathcal{H}} C_{N \ \mathcal{H}}$$
(7)

Reaktywną absorpcję CO₂ do roztworu elektrolitu NH₃-H₂O w reaktorze ze zraszanymi ścianami opisano z użyciem modeli 1D oraz 2D z osiową symetrią. W tym celu do równań modelowych z prac [9, 17] wprowadzono parametry procesu NH₃. Wykorzystywane modele procesu NH₃ uwzględniają kinetykę reakcji, równowagę międzyfazową, równowagę chemiczną reakcji, migrację jonów w roztworze elektrolitu, dyfuzję i konwekcję.

6. Analiza procesu NH₃

6.1. Lotność amoniaku

Jednym z kluczowych zagadnień związanych z zastosowaniem procesu NH₃ do usuwania CO_2 z gazów jest uniknięcie parowania amoniaku. Aktualne normy przewidują w wielu krajach poziom rzędu 10 ppm NH₃ w emitowanych gazach, ale należy się liczyć, że mogą one zostać zaostrzone. Ulatnianie się NH₃ do gazu można ograniczyć wykorzystując efekt ujemnego wzmocnienia transportu masy oraz regulując pH cieczy. Ujemne wzmocnienie transportu NH₃ wystąpi, gdy strumień absorpcji CO₂ będzie na tyle duży by istotnie zmienić pH na powierzchni gaz-ciecz. Umożliwi to transport NH₃ nawet w przeciwnym kierunku do jego całkowitej siły napędowej. Miarą takiego efektu będzie ujemna wartość współczynnika wzmocnienia transportu masy [9].

6.2. Hydrodynamika przepływu gazu i cieczy

W reaktorze ze zraszanymi ścianami w przypadku przepływu cieczy dominującą rolę odgrywa grawitacja. Z kolei o charakterze przepływu gazu decyduje gradient ciśnienia płynu. Z dokonanej analizy hydrodynamicznej reaktora przeciwprądowego wynika, że przy spływie cieczy z niewielką prędkością może dojść do jej porywania lub nawet do wystąpienia jej wewnętrznej cyrkulacji. Wyniki modelowych obliczeń hydrodynamicznych zamieszczone na rys. 2 wskazują, że prędkość gazu na powierzchni międzyfazowej znacząco maleje, w stosunku do prędkości w rdzeniu tej fazy. Profil prędkości cieczy jest bardziej złożony. Ponieważ prędkość cieczy jest mniejsza niż prędkość gazu to przepływ gazu silnie wpływa na profil prędkości cieczy przez gaz, a maksymalna prędkość jest uzyskiwana dopiero w pewnej głębokości w warstwie cieczy. Takie zjawisko jest niekorzystne dla procesu absorpcji CO₂ w wodnym roztworze amoniaku, gdyż nasycona CO₂ ciecz jest porywana ku górze reaktora, a ekspozycja wysyconej cieczy hamuje absorpcję CO₂. Dlatego w projektowaniu reaktorów

należy zapewnić intensywne przemieszanie fazy ciekłej i możliwie cienkie jej warstewki na ścianie reaktora. Znajomość hydrodynamiki ułatwi prowadzenie badań kinetycznych procesu.

Rys. 2. Profile prędkości w reaktorze ze zraszanymi ścianami; linia kreskowana dotyczy fazy gazowej, linia ciągła fazy ciekłej. Oznaczenia: w_C - prędkość cieczy, w_G - prędkość gazu, w^{MAX} - prędkość maksymalna

6.3. Wpływ pH na strumienie wymiany masy

Wartość pH wodnego roztworu amoniaku podczas absorpcji i regeneracji w praktyce oscyluje pomiędzy 8,8 a 9,6 [6]. Amoniak łatwiej przedostaje się do gazu przy większym pH, ze względu na większe stężenie niezdysocjowanego amoniaku w cieczy. Z kolei zbyt mała wartość pH nie sprzyja absorpcji CO₂. Optymalne pH musi więc wynikać z uwarunkowań ekonomicznych procesu. Decydującym czynnikiem określającym pH jest stężenie amoniaku w wodzie, które według autorów pracy [18] powinno oscylować wokół 5%.

6.4. Rola migracji elektrolitycznej jonów w procesie NH3

Wodny roztwór amoniaku jest roztworem elektrolitu, gdyż występuje w nim duża liczba jonów w dużych stężeniach. Stąd transport składników, oprócz mechanizmu dyfuzyjnego i konwekcyjnego, odbywa się także poprzez migrację jonów. Jak wynika z prawa Nernsta-Plancka strumienie migracji usiłują zredukować różnice potencjałów, powodowane zróżnicowanymi współczynnikami dyfuzji poszczególnych jonów. W reakcji CO₂ z NH₃ powstaje anion karbaminianowy i kation H⁺, które różnią się współczynnikami dyfuzji prawie 3-krotnie na korzyść kationu H⁺. Szybsza dyfuzja H⁺ z powierzchni międzyfazowej wytwarza niewielki gradient potencjału. W tak wytworzonym niewielkim polu elektrycznym kierunek migracji i dyfuzji anionów jest zgodny, ale w przypadku kationów jest przeciwny. Transport anionu karbaminianowego jest przyspieszany migracją pod wpływem gradientu potencjału, wywołanego szybszą dyfuzją kationów H⁺. Stąd mechanizm migracyjny dodatkowo wzmacnia transport masy CO₂, pod postacią anionu karbaminianowego, z powierzchni międzyfazowej ku rdzeniowi cieczy. Dodatkowo korzystnie ułatwiony jest transport amoniaku pod postacią kationu NH₄⁺ z rdzenia fazy ciekłej ku powierzchni międzyfazowej.

6.5. Wpływ podwyższonego ciśnienia

Podwyższone ciśnienie procesu wpływa na równowagę międzyfazową. Mianowicie, w podwyższonym ciśnieniu fazy gazowej ciśnienia parcjalne CO_2 i NH_3 są wyższe, w przybliżeniu w proporcji do stopnia kompresji, co przyspiesza absorpcję CO_2 i hamuje niekorzystną desorpcję NH_3 . Umożliwia to zwiększenie sprawności absorbera w zakresie usuwania CO_2 oraz jednocześnie zapobiega ulatnianiu się NH_3 do gazu. Wysokie ciśnienie

gazu można uzyskać, gdy absorber zostanie zintegrowany z obiegiem turbiny gazowej [19]. Wysokie ciśnienie jest także konieczne w desorberze CO₂ (stosuje się do 15 MPa), głównie w celu zapobieżenia równoczesnemu nadmiernemu parowaniu NH₃ z gorącej cieczy.

6.6. Wpływ temperatury

Ilość absorbowanego CO₂ netto maleje z rosnącą temperaturą, co potwierdzają wyniki eksperymentów [6]. Ten efekt wynika z obniżania się rozpuszczalności CO₂ wraz z rosnącą temperaturą. Jednakże wyższe temperatury są korzystne dla szybkości reakcji chemicznych. Ulatnianie się amoniaku można ograniczyć poprzez obniżenie temperatury w absorberze. Proces wykorzystujący schłodzony NH₃ [10] wymaga schładzania gazów spalinowych, włączając w to kondensację pary wodnej oraz schładzania zregenerowanego strumienia amoniaku z desorbera, a także chłodzenia samego absorbera. Koszt chłodzenia można ograniczyć w elektrowniach mających dostęp do dużych akwenów z zimną wodą. Absorpcja w niskich temperaturach charakteryzuje się obniżoną szybkością reakcji i dyfuzji. Regenerację amoniaku prowadzi się w temperaturach rzędu 420 K. Kluczowym parametrem procesu jest zapotrzebowanie na ciepło wymagane w desorberze. Ciepło regeneracji dla procesu NH₃ jest mniejsze niż dla MEA, choć większe niż dla AMP [18].

6.7. Integracja procesu NH3 z technologiami energetycznymi

Integracja instalacji CCS z technologią energetyczną sprowadza się do właściwego zarządzania strumieniami masy i energii. Główne zasady takiej integracji to recyrkulacja gazów spalinowych do komory spalania, usprawniająca spalanie oraz pozwalająca osiągnąć wyższe stężenie CO₂ w spalinach [20], prowadzenie separacji CO₂ pod wysokim ciśnieniem [18], które zwiększa siły napędowe w separacji CO₂ i jednocześnie redukuje ulatnianie się NH₃, integracja cieplna procesów i aparatów, właściwe zarządzanie wewnętrznymi cyrkulującymi strumieniami masy, stosowanie procesów gwarantujących redukcję strat egzergii, ograniczanie zużycia energii w podgrzewaczach, wentylatorach i sprężarkach oraz integrowanie CCS z nowymi technologiami energetycznymi jak np. z ogniwami paliwowymi [20].

Proces NH₃ można więc korzystnie zintegrować, w szczególności poprzez użycie bardzo reaktywnych sorbentów, jak właśnie NH₃, jednoczesne usuwanie kwaśnych gazów (SO₂, NO_x) i pyłów w jednym absorberze, bezpośrednią integrację desorbera i kotłów odzyskowych (HRSG), optymalny dobór ciśnienia pary doprowadzanej do desorbera, prowadzenie absorpcji wysokociśnieniowej w wyniku integracji z obiegiem turbiny gazowej.

7. Wnioski

Celowość podejmowania tematyki badań procesów CCS uzasadniono poprzez interpretację anomalii temperaturowych w Układzie Słonecznym, z której wynika, że czynnikiem ograniczającym globalne ocieplenie na Ziemi jest jeszcze stosunkowo niewielkie stężenie CO_2 w atmosferze. Stwierdzono, że wprowadzenie usuwania CO_2 w energetyce spowoduje znaczącą redukcję emisji SO_2 , NO_x i pyłów, a może pojawić się problem wzrostu emisji NH₃. Dla procesu NH₃ scharakteryzowano hydrodynamikę reaktora ze zraszanymi ścianami oraz omówiono rolę zjawiska migracji jonów, pH, temperatury i ciśnienia. Wskazano, że ulatnianie się amoniaku do fazy gazowej można ograniczyć poprzez obniżenie temperatury absorpcji, optymalizację pH, wysokie ciśnienie gazu i duży strumień absorpcji CO_2 . Scharakteryzowano główne zasady integracji instalacji absorpcyjnych CCS z technologiami energetycznymi.

Literatura

- 1. IPCC 2007, Fourth Assessment Report
- Koornneef J., Ramirez A., van Harmelen T., van Horssen A., Turkenburg W., Faaij A.: The impact of CO₂ capture in the power and heat sector on the emission of SO₂, NO_X, particulate matter, volatile organic compounds and NH₃ in the European Union. Atmos. Environ., 2010, vol. 44, 1369-1385
- 3. Florides G.A., Christodoulides P.: Global warming and carbon dioxide through sciences (Review). Environ. Int., 2009, vol. 35, 390-401
- 4. Chakma A.: Separation of CO₂ and SO₂ from flue gas streams by liquid membranes. Energ. Convers. Manage., 1995, vol. 36, 405-410
- Darde V., Thomsen K., van Well W.J.M., Stendby E.H.: Chilled ammonia process for CO₂ capture. Int. J. Greenh. Gas Contr., 2010, vol. 4, 131-136
- Yeh J.T., Resnik K.P. Rygle K., Pennline H.W.: Semi-batch absorption and regeneration studies for CO₂ capture by aqueous ammonia. Fuel Process. Technol., 2005, vol. 86, 1533-1546
- 7. Liu J., Wang S., Zhao B., Tong H., Chen C.: Absorption of CO₂ in aqueous ammonia. Energy Procedia, 2009, vol. 1, 933-940
- 8. Pellegrini G., Strube R., Manfrida G.: Comparative study of chemical absorbents in postcombustion CO₂ capture. Energy, 2010, vol. 35, 851-857
- 9. Budzianowski W.M., Koziol K.: Stripping of ammonia from aqueous solutions in the presence of carbon dioxide: effect of negative enhancement of mass transfer. Chem. Eng. Res. Des., 2005, vol. 83, 196-204
- Gal E.: Ultra cleaning combustion gas including the removal of CO₂. 2006, Patent no. WO2006022885
- 11. Budzianowski W.M.: A rate-based method for design of reactive gas-liquid systems. Rynek Energii, 2009, (4), 21-26
- 12. Mani F., Peruzzini M., Stoppioni P.: CO₂ absorption by aqueous NH₃ solutions: speciation of ammonium carbamate, bicarbonate and carbonate by 13C NMR study. Green Chem., 2006, vol. 8, 995-1000
- 13. Puxty G., Rowland R., Attalla M.: Comparison of the rate of CO₂ absorption into aqueous ammonia and monoethanolamine. Chem. Eng. Sci., 2010, vol. 65, 915-922
- 14. Pinsent B.R.W., Pearson L., Roughton F.J.W.: The kinetics of combination of carbon dioxide with hydroxide ions. Trans. Faraday Soc., 1956, vol. 52, 1512-1520
- Pacheco M.A., Rochelle G.T.: Rate-based modeling of reactive absorption of CO₂ and H₂S into aqueous methyldiethanolamine. Ind. Eng. Chem. Res., 1998, vol. 37, 4107-4117
- 16. Budzianowski W.M., Koziol A.: Process model of ammonia desorption from aqueous solutions containing carbon dioxide. Chem. Process. Eng-Inz., 1999, vol. 20, 485-501
- 17. Budzianowski W.M., Miller R.: Superadiabatic lean catalytic combustion in a high-pressure reactor. Int. J. Chem. React. Eng., 2009, vol. 7, A20
- Dave N., Do T., Puxty G., Rowland R., Feron P.H.M., Attalla M.I.: CO₂ capture by aqueous amines and aqueous ammonia - A comparison. Energy Procedia, 2009, vol. 1, 949-954
- 19. Budzianowski W.M.: Mass-recirculating systems in CO₂ capture technologies: A review. Recent Patents on Engineering, 2010, vol. 4, 15-43
- 20. Budzianowski W.M.: Method and system for generation of pure hydrogen from gaseous fuels. 2010, Patent application no. PL390649